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Abstract

The transfer functions of the superconducting gneters OSG-CT40, SG-C021 and OSG-
050 operating in Walferdange (Luxembourg), Memb@igium), and Pecny (Czech Republic),
respectively, have been experimentally determinethjecting known voltages into the feedback
loop of the control electronics. The transfer fummctis expressed in terms of either its Laplace
transforms or by zeros and poles. The latter ilyidsed in seismology. In particular in the high
frequency seismic band, the full transfer functminthe Superconducting Gravimeter (SG) is
required for data analysis. The results for théseet SGs are different enough that the transfer
function cannot be calculated theoretically or assdi to be the same for all the SGs. An accurate
and precise determination has to be performeddoh &G.

1. Introduction

In geophysics, Superconducting Gravimeters (SGs) umed to continuously monitor
relative gravity changes. They are the most preiciseuments to study of solid earth tides: for
instance, it is possible to measure tidal ampligughethe diurnal and semi-diurnal bands with a
precision of about 0.1-0.2 nri/for integration periods of 2-3 years. Their instental drift is
extremely low (typically around 10 nm/per year) and smootiVn Camp and Francis, 20p7
SGs observations are used to monitor the oceamipadfects, to validate the global ocean tides
models, to record gravity changes due to the athwygp as air mass redistribution and pressure
changes related to meteorological ever@®ddkind, 199p and to monitor the water storage
changes Goodkind, 1999, Creutzfeld et al., 2016t higher frequencies, SGs record normal
modes of the Earth excited after big Earthquakes Camp, 1999]

Some of these applications require a precise m@tation of the instrumental drift of the
SGs. Simultaneous measurements of the SGs sidieldywith an absolute gravimeter has been
proved to be very efficient not only to estimatesSIBng term drift but also to calibrate the
relative SGs. In addition, bad AG values due tofomationing of the absolute gravimeter can be
detected from regular comparisons with the contisu®G time series.

The knowledge of the transfer function of SGs seasial to fully exploit their observations
[Van Camp, 1998; Van camp et al., 2D0Besides analysis of their observations, thesfiem
functions play an important role when comparingcombining data sets from multiple SGs or
other instrumentations as absolute gravimetergisnm®meters. To reach optimal performance of
SGs in tidal research, where SGs can be consideeslorld most sensitive instruments, those
instruments should be calibrated with an accurddy. 1% in amplitude and 0.01 second in phase
[Hinderer et al., 1991, Baker and Bos, 2D03an Camp et al. [2000] were the first to detereni
experimentally the transfer function of a SG. Saepl sine waves voltages are injected into the
feedback circuit of the control electronics of gravimeter and the system response is recorded.

This method was applied to determine transfer foncof the cryogenic gravimeter SG-
C021 operating in Membach (Belgium), in a serieserperiences (1996-2005) for different
outputs (depending on the analog filter) and d#iferdata acquisition systems. A precision better
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than 0.01 second in the phase response (time lag)obtained. In 2007, the same method was
applied to determine the transfer function of th&G3CT40 operating in Walferdange
(Luxembourg), as well as of the OSG-050 operatm@ecny (Czech Republic) (OSG meaning
Observatory Superconducting Gravimeter).

In this paper, the calibration experiment carriad m Walferdange is described. The
transfer functions obtained for the three gravimsetee then compared. They are represented in
terms of Laplace transform&¢herbaum, 20Q1In seismology, this is the standard formulation
used by the seismic Incorporated Research Institsitin Seismology (IRIS)) data badstp://
www.iris.edy, where some SGs data are archived. In such a Beada, the information on the
transfer function (being considered as importarthasobservations themselves) is mandatory.

2. Functioning principle of the superconducting graimeter

In superconducting gravimeters, a hollow supercotidg niobium sphere is in
equilibrium under the combined action of the gnavdrce on the sphere and a vertical upward
directed levitation force. This force is provideg the magnetic field generated by a pair of
superconducting niobium coils with persistent cotréGoodkind, 199Pp Two coils - their
configuration respect to the sphere and the rabbsurrents in the coils - allow one to
independently adjusting the total levitating foes®l the force gradient in such a way that a small
change in gravity can induce a large variationhe sphere vertical position. This variation is
detected by an electrostatic device (a capacithndge constituted by three capacitor plates and
the levitating sphere) and a feedback magneticefd¢generated by a feedback coil) brings the
sphere back to its initial position. The feedbantegrator voltage is linearly proportional to
changes in the acceleration of gravity. To allow #table levitation to occur, the gravity sensor
(Figure 1) must be maintained in a condition ofesapnductivity (niobium is superconducting
below 9.3 K). This is realized by placing the gtavsensor inside a Dewar filled with liquid
helium (4.2 K boiling point).
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Figure 1. Gravity sensor unit of the Superconducting Grav@ané-igure from the GWR Manual).
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The unique characteristics of SGs lie in the catynof the gravity signal registration, the
linearity and stability of feedback system, theybigh sensitivity (5 (hm/s?)?/Hz corresponding
to a precision of 0.2 nm/s2 (or 0.02 puGal) at aqueof 100 s Yan camp et al., 2005; Rosat et al,
2009 and a low instrumental drift of a feuGal/year Yan Camp and Franci2007].

The instrument calibration can be obtained bynfigitthe SG observed signal to known
signals (i.e. Earth tides or modeled inertial @fgclt can be further improved by comparing the
SG observations to simultaneous absolute gravitgsorements in a nearby location. Francis et
al. (1998) showed that accuracy on the amplitudibredion factor of 0.1% can be achieved
within 4 days of observations during high tideswdeer, this method does not provide a reliable
phase calibration. This latter requires anotherety experiment to determine the transfer
function.

The feedback voltage is the output signal fromS3fegravity control card (Figure 2, upper
part). On the card, an analog low-pass filter mvted as an anti-aliasing filter for digitizingeth
gravity signal. The card and the filter signifidgrdaffect the transfer function of SGs.

For the SG-C021, the feedback voltage was prowdéd the use of three different cards
[Van Camp et al. 2000, Van Camp et al. 20QBitil 1997, the electronics was provided witb-a
pole Butterworth tide filter and a card with a 2g8utterworth Gravity Signal (GS) with cutoff
periods at 72 second and 1 second, respectivehceS1997, in order to fulfill the Global
Geodynamics Project (GGP) requireme@sossley et al., 199%nd to improve the quality of the
electronics with up to date components, a card antl8-pole Butterworth low-pass filter (GGP-1)
and cutoff period at 16 second replaced the oldioer

Currently, most of the superconducting gravimetees equipped with a GGP-1 filter or,
alternatively, a GGP-2 filter, having cutoff periati32 second.

The transfer function determinations for the SG-CO&re also conducted for different
data acquisition systems, i.e. K2000 voltmetersalanterra 330 data logger. Van Camp et al.
[2008] concluded that both the low-pass filter euderistics and the data acquisition system
characteristics have an effect on the instrumesgiaese.
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Figure 2. Scheme of the superconducting gravimeter contegit®nics. The gravity control card
includes the feedback integrator and the low-pidtss (Figure from the GWR Manual).
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3. The Laplace transform and the transfer function

The Laplace transform represents a powerful diffeéaé instrument for the analysis of
Linear Time Invariant systems (LTI), such as elauir circuits Bertoni et al., 2003, Ambardar,
1995, Beerends et al., 2003The Laplace operator acts on functions in thmetidomain,
transforming them into functions in the frequenaym@in. The system input and output are
functions of the complex angular frequency or Laplaariable, usually denotegl expressed in
radians per unit of time.

If f(t) represents a real function of time defined forigpes values of the time variablke
the Laplace Transform &ft) is defined as

L[f )] =F(s)=lim, jT ft)edt=[" f(t)edt 0<e<T 1)

wheresis a complex variable defined Byo+i .
The differential Laplace operator is a linear opararhe Laplace Transform of the time
derivative of a functiorfi(t) havingF(s) as Laplace transform, is expressed as

LY - str9- 107) @)

The Laplace Transform of the time integral of achion f(t) having F(s) as Laplace
transform, is expressed as

U f(r)dr} FE 3)

Laplace transform provides solutions to the difftiad equations characterizing LTI
systems, reducing them to more easily solvablebasge relations.

4. Transfer function and frequency response for LTIsystems

A transfer function (or network function) for a LEystem is a mathematical relationship
(in the spatial or temporal frequency domain) betvehe model output and inpWi[Stefano et
al., 2004. In the case of continuous input signdl) and output signay(t) in time domainthe
transfer function of a LTI system can be expresasdhe ratio between the output Laplace
transform Y(s) and the input Laplace transform X(s)

AC)

X(9) (4)

H(s) =

where X(9= L[x(t)] andY(sF LJ[y(t)]. The transfer function also corresponds to the lagpla
transform of the system’s impulse response.

For LTI systems, because of the previously undedliproperties of the Laplace transform,
the transfer function is generally represented hy tatio of two polynomials of the Laplace
complex variables:
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> bs’

H(s) =L (5)

> as’
j=0

The poles/zeros are defined as the valuesfof which the denominator/numerator of the
transfer function is equal to zer8dherbaum, 20Q1In the time domain, each pole is associated
with a response mode of the system. The impulgorse of the system is a linear combination of
the different response modes. Thus, the transfetifon completely defines the system response.

If the input of a LTI system is a sinusoidal signath frequencyw (rad/s), it can be
represented in complex form:

X(t) =|X| (@) =|X| @ @ = X @ (6)

where | X| is the input amplitudeyx the input phase andepresents the imaginary number. The
corresponding system output is also a sinusoidaksihaving the same frequeneybut generally
a different phase and amplitude:

y(t) =|Y| @) =]y &% & =Y & Y

where |Y| is the output amplitude ang, the output phase. The amplitude frequency response
represents the ratio between the output and inpptitudes as a function of the frequencyand
is defined as the gain:

@)

G(w) = X @]

(8)

The phase frequency response represents the difef@etween the output and input phases as a
function of the frequency:

A) = @, (@) — Py (@) (9)

For a discrete frequencies sample the frequen@prse in complex form is

| | Y
Rlw,) = “ “ (&% =G, (&% _7 , n=1: frequency sample length (10)

n

where, for an input signal at frequeney, G, and®, represent the gain and the phase shift,
respectively.

Least-squares fit algorithms allow one to deterntime polynomial coefficients of the
transfer functiorHs (Eqg. 5) from the experimental frequency respomseomplex form (Eg. 9),
determined on a limited chosen frequencies. Coplerthe frequency response in complex form,
and consequently the gain and phase lag, can beeddrom the transfer functioHswhere the
variablesis replaced with the variable{) for positive values ab.
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5. Experimental determination of the frequency respnse for the OSG-CT40

The frequency response for the OSG-CT40 operating/alferdange (Luxembourg) was
determined using the/an Camp et al.[2000] procedure. The frequency response was
experimentally obtained by injecting step functicenrsd sine waves (input signal) at defined
voltages into the feedback loop of the gravimeldére output signal was taken from the GGP-1
low pass filter.

In the step function methodR{chter and Wenzel, 1991; Wenzel, 1994; Van Cangb. et
2004, the step response function is differentiatedlbdain the impulse response function. The
Fourier spectrum of the impulse response functiomesponds to the transfer function of the
system Bloomfeld, 1976, Van Camp et al., 2000 the sine wave method, the transfer function
is obtained by fitting both the input signal (wawefected at different frequencies) and the output
signal (instrument response) with a sinusoidal fienc The amplitude ratios and phase
differences as a function of the input frequenatesrespond to the instrumental frequency
response (Eq.7 and Eqg. 9).

The superconducting gravimeter can be considered bBmear Time Invariant system
[Goodkind, 199P It means that both sine waves and step functehuld provide the same
transfer function. The comparison of results fréva two methods gives the opportunity to assess
their accuracy.

29 time steps and sine waves, with 4 Volt amplifiddour different periods (200 second,
500 second, 1000 second and 2000 second) wereeithjedo the feedback loop of the control
electronics of the SG. The instrument frequencyoases obtained with the sine wave and the
step function methods are given in Table 1 andlayga in Figures 3. As expected and found
previously by Van Camp et al. (2000), both methgi® similar results consistent within their
uncertainties.
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Figures 3.Frequency response of the OSG-CT40 obtained lgting sine waves (red dots) and
step functions (continuous line) into the instrumelectronics: a. Phase as a function of period
represented in terms of time lag (s); b. Normaliaegplitudes a function of period.

Table 1. Time lags and normalized amplitudes of the OSG®4tained, for four different
periods, using the sine waves and the step furectiethods.

Period/ Sine Waves Step functions Sine Waves Step functions
second Time lag/second Time lag/second Amplitude Amplitude
200 9.818+-0.011 9.823+-0.017  1.044374+-0.000353469+-0.0004
500 8.571+-0.011 8.554+-0.042  0.990787+-0.000188892+-0.0130
1000 8.343+-0.003 8.323+-0.111  0.980199+-0.00002®787+-0.0005
2000 8.281+-0.020 8.256+-0.136  0.977218+-0.000008759+-0.0001

6. Comparison between the transfer functions of #three gravimeters

In this section, we compare the frequency responsdébe OSG-CT40 in Walferdange
(experiment of 2007) with the ones of the SG-CG2Membach (experiment of 2005) and of the
OSG-050 in Pecny (experiment of 2007). The tran&fection of the OSG-050 was determined
using only step functions with voltages of 10 Vaniid 15 Volt.

In the three experiments, the GGP-1 filter outpaswsed. For the SG-C021, the output
data were acquired with a Quanterra 330 data loer Camp et al., 2008The amplitude and
phase responses of the three instruments are ykspila Figures 4.
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Figures 4.Normalized amplitude responses (a) and time lagXpgrimentally determined for the
OSG-CT40 (blue), the SG-C021with the Quanterrad8@ logger (green) and the OSG-050(red).

The frequency responses, especially in phase, ignéfisantly different in shape, for
frequencies higher than $Hz. Differences up to 30% for the phase and udG® for the
amplitude are observed.

The polynomial coefficients of the transfer funasoare obtained from the complex
experimental frequency response with a least-squiiteThe form of the transfer function is
defined by the ratio of two polynomials of the cdexpLaplace variabls (Eg. 5). For the three
gravimeters, the numerator and denominator ofrdresfer function are best modeled &soéder
polynomials of the Laplace variabéeLowest orders are not sufficient to match the expental
transfer functions while highest orders do not iower the fit. For the OSG-CT40, the average
difference between the modeled and observed vadfiehe frequency response is13° in
amplitude and A0° second in phase. Similar results are obtainethfoother gravimeters.

We stress that the order of the denominator musiqol or superior to the order of the
numerator, otherwise the gain would be unboundedh@weasing frequencies.

From the transfer functioH(s), the instrument frequency response (amplitude dnade)
is calculated by replacing in equations (11), (&48Y (13) the variabls with the variable ¢-i).
The transfer functions for the three SGs are:

- OSG-CT040
~0.0389%° +0.08883° - 0.126&" + 0.115%° — 0.066642 + 0,01835 + 0.0010281
<® +1.744° +1.65* +0.826%° +0.229%% — 0.027% +0.00102¢ (11)

H(s) =
- SG-C021

0.02815° + 0.02244° — 0.01175" + 0.02098° — 0.029722 + 0.01456 + 0.002007
® +1.324® +1.215%* +0.626s% + 0.20252 — 0.0334% + 0.00200° 11864

H(s) =



(12)

- OSG-050
HE == 0.07454° + 0.175%° — 0.259%* + 0.25025° — 0.15585% + 0.04905 + 0.002634
S5+ 20435° + 21495° + 1305° + 044782 — 0.07236 + 0.002634 (13)

In Figures 5, the poles and zeros of the transfactfons for the three gravimeters are
shown. The poles are the valuessdhat make the denominator of the transfer funcéqoal to
zero leading to the divergence (i.e. instabilitf/}fee transfer function. As previously pointed out,
each pole is associated, in the time domain, toodenof the instrument response, which is
expressed by:

Y ® =;Q I 12§

where p represents the poles in complex form abdare constants depending on the initial
conditions.
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From the pole-zero diagrams (Figures 5), some ik observations on the systems responses
can be drawn. For the three instruments, the @olesll located in the left half of tlsgplan (real
part <0). This implies that all the response congmb® tend to O fot tending to infinite, and
consequently the systems stability.

The response is qualitatively similar for the thiggavimeters. The three systems are
characterized by two pairs of conjugate complexepotorresponding to two sinusoidal decaying
response components, and two real poles, corresgpia two exponentially decaying response
components. The differences lie in the decay r@diedined by the poles real part) and the
frequency of the oscillations of the sinusoidal e®ddefined by the poles imaginary part). The
nearest the pole is to the imaginary axis, the stws the decay rate. The nearest the pole feeto t
real axis, the lowest is the oscillation frequentlye response component with the slowest decay
rate represents the dominant response mode.

For the three gravimeters, the dominant modesgenential terms with different decay
rates. The dominant terms for the OSG-CTO040, theC8&1 and OSG-050 persist approximately
for 56 s, 30 s and 80 s, respectively.

Conclusions

The frequency response (amplitude and time lagh@fOSG-CT40 from Walferdange in
Luxembourg has been experimentally determined u$iagprocedure of Van Camp et al. (2000).
The same precision and accuracy as this previody stere obtained.

The transfer functions from three SGs were alsopaoed. The differences can reach 10%
in amplitude and 30% in phase in the seismic bafictquencies higher than 1®4z.

For a complete and accurate calibration of SGsragemmend to the SG operators to
carry out the same procedure. The transfer functiondefinitively unique for each
superconducting gravimeter (including the gravibntrol card and the data acquisition system).
We also encourage expressing the transfer funétiolerms of Laplace Transforms, which is
widely used in seismology. It provides a compaatl &fficient way to express the transfer
function. Its determination is essential to analgmd interpret the SGs’ observations especially in
the seismic frequency band.
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