

# **Composite Analysis of Conceptual Models for Significant Snowstorms in the Lower Ohio Valley**

#### Introduction

- As little as 2 inches of snow accumulation can cause major traffic problems and close schools in the Ohio Valley.
- The purpose of this study is to identify patterns associated with 2+ inches of snow across the NWS Louisville (LMK) county warning area (CWA).
- The goal is to help Ohio Valley forecasters identify potential high impact snow events.

| Туре | Number | Main Pattern                           |                                            |  |
|------|--------|----------------------------------------|--------------------------------------------|--|
| 1A   | 9      | Broad SW Flow Aloft                    | Weak low and fr                            |  |
| 1B   | 24     | Broad SW Flow Aloft                    | Weak low and fr                            |  |
| 2    | 23     | Deep Trough Aloft                      | Stronger low ove<br>extending north        |  |
| 3    | 10     | Closed Low Aloft<br>(East Coast Storm) | Strong low over so<br>(heaviest snow ofter |  |
| 4    | 6      | Polar Vortex over<br>Northern States   | Weak low in Great La<br>just south/east o  |  |
| 5    | 9      | Clipper System                         | Weak low and cold f<br>snow often in nor   |  |

### **Type 1B Composites**



Erin E. Snavely and Theodore W. Funk, *National Weather Service Louisville, KY* Chad M. Gravelle and Charles E. Graves, Saint Louis University; Evan B. Webb, Western Kentucky University

## Surface

- ront west of CWA; in warm sector
- front south of CWA; in cold sector
- er TN Valley/Gulf States with front thward to south and east of CWA
- outheastern U.S. or near East Coast n in eastern CWA or just east of CWA)
- akes area with trailing arctic cold front of area; arctic air mass moving in
- front NW, W, or SW of CWA (heaviest rthern CWA or just N or NE of CWA)

# Method

# 850 hPa

In exit region of 850 hPa jet and transport vectors; LLJ centered Lower MS Valley; good warm ac

#### Similar to 1A

Closed low south/southwest of C thermal ridge axis and exit region extending into area

Strong, closed low over eastern southeastern U.S. with east or n flow across CWA

West to southwest flow over CW of low over Great Lakes; modes advection over top arctic air at

Open trough axis or weak low CWA with W to SW flow over

# **Type 2 Composites**

Cases from 1980-2010 were studied using snow accumulation maps generated from NWS Cooperative Observer Program (COOP) observations. Five main synoptic patterns/types were identified from the 81 cases used.

Composite parameters were produced using the North American Regional Reanalysis (NARR) dataset using a General Meteorology Package (GEMPAK) program developed at Saint Louis University.

• Using storm-relative composites centered around the 850 hPa low position, clear signals were discerned in each composite type.

|                                       | 500 hPa                                                                                                               | 300 hPa                                                                                                                  | Frontogenesis                                                                                               |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| d moisture<br>d over TN/<br>advection | Broad, strong SW flow over OH Valley<br>with mean trough axis over central or<br>southwestern U.S.                    | Strong jet core oriented W-E or SW-NE<br>over Great Lakes; CWA often in<br>anticyclonic right entrance region of jet     | Significant 850 hPa and 850-700 hPa<br>frontogenesis over central/western KY<br>and TN, sern MO, and nrn AR |
|                                       | Similar to 1A                                                                                                         | Similar to 1A                                                                                                            | Similar to 1A                                                                                               |
| f CWA with<br>gion of LLJ             | Deep trough over central U.S.; S or SW<br>flow over OH Valley; embedded short-<br>waves ahead of mean trough at times | Jet core oriented S-N or SW-NE east of trough axis and over/near CWA                                                     | Strong 850 hPa and 850-700 hPa frontogenesis axis over/near CWA                                             |
| ern TN or<br>northeast                | Deep trough or closed low over the southeastern U.S. or Carolinas                                                     | Jet core oriented S-N or SW-NE to south<br>and east of CWA, with snow to left of jet<br>core in isotach gradient zone    | Strong 850 hPa and 850-700 hPa<br>frontogenesis axis over middle/<br>eastern TN, eastern half of KY, WV     |
| CWA south<br>est warm<br>at surface   | Polar vortex/closed low over northern<br>Plains or Great Lakes with SW flow across<br>OH Valley                       | Cyclonically-curved jet core in base of<br>trough over TN Valley south of CWA, with<br>CWA on cyclonic shear side of jet | Max 850 hPa frontogenesis over<br>central KY; 850-700 hPa values weak<br>and just west of CWA               |
| v west of<br>er area                  | Digging shortwave trough west or northwest of CWA within W to NW flow                                                 | Cyclonically-curved jet core S and W of CWA diving SE; CWA on cyclonic side of jet                                       | Weak 850 hPa frontogenesis near<br>CWA; no discernable 850-700 signal                                       |

# **Type 3 Composites**





### **Type 5 Composites**

and the man with the with